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A new finite-difference time-domain (FDTD) formulation for modeling Graphene is proposed, in which Graphene is modeled as a 

resistive sheet with a frequency-dependent conductivity. The formulation is first developed in the context of the vector wave finite-

element time-domain (FETD) and then reduced to the FDTD based on the equivalence between these two techniques. The obtained 

formulation is easy-to-implement and does not alter the original FDTD update equations. It can be applied to an existing FDTD code 

by simply adding a correction term to the appropriate variables. One of the main contributions of the paper is analyzing the stability of 

the proposed formulation, which has not been done previously. 

 
Index Terms— Finite difference methods; Finite element analysis; boundary conditions. 

 

I. INTRODUCTION 

nvented in 2004, Graphene is often called a revolutionary 

material of the 21
st
 century. Due to its outstanding electrical 

and mechanical properties, Graphene has recently gained 

significant interest among scientists. Many Graphene based 

applications have been introduced in recent years and the need 

for a time domain simulation tool for studying Graphene based 

devices has emerged. 

In electromagnetic fields Graphene acts like a thin surface 

with conductivity that depends on chemical doping or external 

fields [1]. Up to now, three approaches have been used to 

model Graphene in FDTD methods which are: 1) regular 

FDTD method with very fine field discretization in Graphene 

layer [2-3], 2) sub-cell FDTD approach [4] and 3) Graphene as 

a surface boundary condition (SBC) in FDTD [5]. Since 

Graphene is very thin (one atomic thick layer) the first 

approach will be very expensive requiring a lot of memory 

and time, which makes it a poor option in practice. In spite of 

the merits of the other two approaches, they share at least two 

major drawbacks: 1) they require different update equations in 

the vicinity of the Graphene sheet, which makes the 

programming difficult; 2) the effect of the modified equations 

on the stability of the underlying FDTD has not been 

analytically studied. In this paper, Graphene is considered as a 

resistive sheet, as in [5]; however, the formulation is inspired 

by the FETD method based on the wave equation [6]. The 

formulation is then reduced to the FDTD method by 

evaluating FETD integrals using the trapezoidal rule. The 

proposed FDTD formulation can be implemented with 

minimal modification on an existing FDTD code. In addition, 

because of the equivalence between FDTD and FETD, the 

stability of the proposed FDTD method including arbitrary-

oriented layers of Graphene, unlike the widely-used von 

Neumann technique in FDTD (in which an unbounded and 

homogeneous domain is assumed) can be analyzed by finding 

the location of the eigenvalues in the FETD formulation.  

II. FORMULATION 

A. Graphene conductivity model 

Graphene has a frequency-dependent complex-valued con-
ductivity. The macroscopic Graphene conductivity model is 
used in the FDTD method, which consists of two terms: inter-
band conductivity and intraband conductivity. The Graphene 
surface conductivity (in units of [S]) is given by the Kubo for-
mula in an integral form. The simplified Kubo formula for in-
traband conductivity term is [7]: 

𝜎𝑖𝑛𝑡𝑟𝑎(𝜔, 𝜇𝑐, 𝛾, 𝑇) =
𝛼

𝜔 − 𝑗2𝛾
                 (1) 

in which 𝛼 =
𝑗𝑒2𝑘𝐵𝑇

𝜋ћ2 (
𝜇𝑐

𝑘𝐵𝑇
+ 2𝑙𝑛(𝑒(−𝜇𝑐/𝑘𝐵𝑇) + 1)), ω is the 

angular frequency in radians and γ is the scattering rate in s
−1

. 
Also, μc is the chemical potential in eV, which can be con-
trolled by chemical doping or by applying a bias voltage, T is 
the temperature in Kelvin, e is the electron charge, ћ is the re-
duced Planck’s constant, and kB is the Boltzmann constant. The 
reason why just intraband conductivity has been introduced 
here is because in microwave frequencies, in which we are 
interested here, the interband term can be neglected. 

B. Modeling of Graphene in FETD 

Fig. 1 shows a 2-D rectangular grid in which the electric 
field unknowns {e} are assumed to be represented by edges. 
Graphene can be considered as a resistive sheet on which we 
have 

𝜎𝑖𝑛𝑡𝑟𝑎𝐸 = 𝑛̂ × 𝐻                          (2) 

Such a condition can be incorporated into the FETD formu-
lation as [6] 

[𝑇]
𝑑2{𝑒}

𝑑𝑡2
+ 𝜎𝑖𝑛𝑡𝑟𝑎[𝐺]

𝑑{𝑒}

𝑑𝑡
+ [𝑆]{𝑒} = {0}    (3) 

  

Where {𝑒} = [𝑒1, 𝑒2, … 𝑒𝑁]𝑇 and [𝑇], [𝐺], [𝑆] are square matri-
ces given by: 

I 
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𝑇𝑖𝑗 = ∫ 𝜖𝑊𝑖
(1)

. 𝑊𝑗
(1)

𝑑Ω                    (4) 

𝑆𝑖𝑗 = ∫ 𝜇−1∇ × 𝑊𝑖
1. ∇ × 𝑊𝑗

(1)
𝑑Ω                (5) 

𝐺𝑖𝑗 = ∫ 𝑛̂ × 𝑊𝑖
(1)

. 𝑛̂ × 𝑊𝑗
(1)

𝑑𝑠
𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒

        (6) 

in which 𝑊(1) represents the Whitney 1-form element. Eq. (3) 
can be transformed into the mixed FETD formulation in which 
both electric {𝑒} and magnetic fields {b} are being updated 
together similar to the FDTD, as 

{
[𝑇]

𝜕{𝑒}

𝜕𝑡
= [𝐶]𝑇[𝑇𝑓]{𝑏} − {𝐽}

𝜕{𝑏}

𝜕𝑡
= −[𝐶]{𝑒}

               (7)       

Where 
𝜕{𝐽}

𝜕𝑡
= (𝜎𝑖𝑛𝑡𝑟𝑎(𝑡)[𝐺]) ∗ 𝜕{𝑒}/𝜕𝑡, [𝐶] is the discrete curl 

operator, and 

𝑇𝑓,𝑖𝑗 = ∫ 𝑊𝑖
(2)

. 𝑊𝑗
(2)

𝑑Ω                     (8) 

in which 𝑊(2) represents the Whitney 2-form element. In order 
to obtain the FDTD equations from (7), the trapezoidal integra-
tion has to be employed to evaluate integrals, which makes 
[𝑇], [𝑇𝑓], and [𝐺] fully diagonal. It should be noted that only 

those unknowns on which the Graphene sheet lie have non-
zero contribution in [𝐺]. Having discretized (7) in time using 
desired method, update equations identical to the fully-
discretized FDTD can be obtained in which the electric field 
update equation for those unknown resided on the Graphene 
sheet have an additional term {J}. In case of an explicit FDTD, 
e.g., the standard leap-frog FDTD, J can be updated separately 
and applied as a correction term after the standard update pro-
cess is performed, which greatly simplifies implementation. 
Needless to mention the update equation for the magnetic field 
is not changed in this approach. 

III. RESULTS 

In order to validate the proposed formulation, we conducted 
a simple numerical example: calculating reflection and trans-
mission coefficients of an infinitely long Graphene sheet. The 
problem was solved in 1-D and the plane-wave had a Black-
man-Harris pulse shape. The parameters of the Graphene are as 
in [7] and the exact solutions were calculated by 𝑇 = 2/(2 +
𝜂0𝜎𝑔𝑟) and Γ = 𝑇 − 1 , in which 𝜂0 is free space impedance 

and 𝜎𝑔𝑟  is Graphene conductivity. 

Fig. 2 shows comparison of the numerical and analytical re-
sults of transmission and reflection coefficients in which we 
can observe our method is in an excellent agreement with the 
analytical results. Relative error between the analytical results 
and the proposed method is less than %0.02 in the considered 
frequency range. Our numerical studies showed that the formu-
lation is stable for time steps smaller than the stability limit of 
the FDTD technique. 

IV. CONCLUSION 

A new FDTD formulation based on the equivalence be-
tween the FETD and the FDTD on a Cartesian grid has been 

proposed. The formulation can be easily embedded in an exist-
ing FDTD code.  

Detailed formulation and more numerical examples will be 
presented in the conference and the long version of the paper. 
Moreover, we will include the stability condition of (3), which 
has similar stability condition as the corresponding FDTD for-
mulation. 

 

 
Fig.1. Graphene sheet placed in a 2-D rectangular grid. 

 

 
Fig.3. Comparison between transmission and reflection coefficients of our 
numerical method and analytical results for Graphene; T=300K, τ=0.5ps, 
μc=0.5ev. 
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